If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7x2 + -1x + 9 = 0 Reorder the terms: 9 + -1x + 7x2 = 0 Solving 9 + -1x + 7x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. 1.285714286 + -0.1428571429x + x2 = 0 Move the constant term to the right: Add '-1.285714286' to each side of the equation. 1.285714286 + -0.1428571429x + -1.285714286 + x2 = 0 + -1.285714286 Reorder the terms: 1.285714286 + -1.285714286 + -0.1428571429x + x2 = 0 + -1.285714286 Combine like terms: 1.285714286 + -1.285714286 = 0.000000000 0.000000000 + -0.1428571429x + x2 = 0 + -1.285714286 -0.1428571429x + x2 = 0 + -1.285714286 Combine like terms: 0 + -1.285714286 = -1.285714286 -0.1428571429x + x2 = -1.285714286 The x term is -0.1428571429x. Take half its coefficient (-0.07142857145). Square it (0.005102040819) and add it to both sides. Add '0.005102040819' to each side of the equation. -0.1428571429x + 0.005102040819 + x2 = -1.285714286 + 0.005102040819 Reorder the terms: 0.005102040819 + -0.1428571429x + x2 = -1.285714286 + 0.005102040819 Combine like terms: -1.285714286 + 0.005102040819 = -1.280612245181 0.005102040819 + -0.1428571429x + x2 = -1.280612245181 Factor a perfect square on the left side: (x + -0.07142857145)(x + -0.07142857145) = -1.280612245181 Can't calculate square root of the right side. The solution to this equation could not be determined.
| 48=-11t+18+21 | | 48=-11+18+21 | | q+.3=-1.1 | | 0.25y+27=41 | | -1/6+1/2 | | 1/4^2+1/4-5/16=0 | | 3=4/7+b | | 5(x-4)=9 | | sin^8x+cos^14x= | | 2(1-5x)-3(6x+7)=-2x-3x | | x+(x*(24/100))=y | | Z+4=2+2.6 | | 8=9+4 | | x+(x*(24/100))=2.9 | | 9=8(9)+9 | | .25(x-2)+4=12 | | -2a^2-36a+126=0 | | -4(1+2x)-8x=6(-12x-10) | | 5(n+2)=3/5(5/10n) | | 3b+1=11 | | -37-8x=-2(8x+8)-5 | | 7-7p=11-10p | | 5(5k+3)-4k+2k-7= | | -7/2(y-10)-1/4y | | -7p+7=-10p+11 | | LWD=V | | (3p-14)/(p+6) | | X/5+x/4 | | 12=5x-2-3x | | 8n+5n=13 | | -16-x=-4(-x+4) | | H+4=10 |